Impact of Apparent Antagonism of Estrogen Receptor β by Fulvestrant on Anticancer Activity of 2-Methoxyestradiol.
نویسندگان
چکیده
Osteosarcoma is one of the most malignant bone tumors of childhood and adolescence. Interestingly, the presence of estrogen receptors α and β has been reported in human bone cells, including osteosarcoma. Thus, inhibitors of estrogens such as fulvestrant, are considered candidates for novel endocrine therapy in treatment of osteosarcoma. Another anticancer agent that seems to be very effective in treatment of osteosarcoma is a derivative of 17β-estradiol, 2-methoxyestradiol. The aim of this study was to determine the anticancer activities of pure anti-estrogen, fulvestrant and combined treatment of fulvestrant and 2-methoxyestradiol towards highly metastatic osteosarcoma 143B cells. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used in order to determine the antiproliferative potential of the compounds, and western blotting for estrogen receptors α and β. Flow cytometry was used in order to determine induction of cell death, cell-cycle arrest, mitochondrial depolarization, and DNA damage. Herein, we showed that fulvestrant has anticancer activity only at high concentrations. We were able to find and expression of estrogen receptor β, while we did not detect estrogen receptor α in osteosarcoma 143B cells. Moreover, fulvestrant down-regulated the expression of estrogen receptor β, and this effect was reversed by 2-methoxyestradiol. Thus, the obtained data suggest that 2-methoxyestradiol may exert part of its anticancer activity through modulation of expression of estrogen receptor β.
منابع مشابه
Estrogen Receptor α Mediates Proliferation of Osteoblastic Cells Stimulated by Estrogen and Mechanical Strain, but Their Acute Down-regulation of the Wnt Antagonist Sost Is Mediated by Estrogen Receptor β*
Mechanical strain and estrogens both stimulate osteoblast proliferation through estrogen receptor (ER)-mediated effects, and both down-regulate the Wnt antagonist Sost/sclerostin. Here, we investigate the differential effects of ERα and -β in these processes in mouse long bone-derived osteoblastic cells and human Saos-2 cells. Recruitment to the cell cycle following strain or 17β-estradiol occu...
متن کاملTamoxifen regulation of bone growth and endocrine function in the ovariectomized rat: discrimination of responses involving estrogen receptor α/estrogen receptor β, G protein-coupled estrogen receptor, or estrogen-related receptor γ using fulvestrant (ICI 182780).
Tamoxifen is a selective estrogen receptor (ER) modulator, but it is also a deactivating ligand for estrogen-related receptor-γ (ERRγ) and a full agonist for the G protein-coupled estrogen receptor (GPER). Fulvestrant is a selective ER down-regulator that lacks agonist effects on ERα/ERβ, is inactive on ERRγ, but acts as a full agonist on GPER. Fulvestrant effects on tamoxifen actions on uterin...
متن کاملApigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-A-dependent and estrogen receptor-A-independent mechanisms
Breast cancer resistance to the antiestrogens tamoxifen (OHT) and fulvestrant is accompanied by alterations in both estrogen-dependent and estrogen-independent signaling pathways. Consequently, effective inhibition of both pathways may be necessary to block proliferation of antiestrogen-resistant breast cancer cells. In this study, we examined the effects of apigenin, a dietary plant flavonoid ...
متن کاملImmunotherapeutic target expression on breast tumors can be amplified by hormone receptor antagonism: a novel strategy for enhancing efficacy of targeted immunotherapy
Immunotherapy has historically been successful in highly antigenic tumors but has shown limited therapeutic efficacy in non-antigenic tumors such as breast cancers. Our previous studies in autoimmunity have demonstrated that increased antigen load within a tissue enhances immune reactivity against it. We therefore hypothesized that enhancing expression of target proteins on breast tumors can in...
متن کاملApigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-alpha-dependent and estrogen receptor-alpha-independent mechanisms.
Breast cancer resistance to the antiestrogens tamoxifen (OHT) and fulvestrant is accompanied by alterations in both estrogen-dependent and estrogen-independent signaling pathways. Consequently, effective inhibition of both pathways may be necessary to block proliferation of antiestrogen-resistant breast cancer cells. In this study, we examined the effects of apigenin, a dietary plant flavonoid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Anticancer research
دوره 36 5 شماره
صفحات -
تاریخ انتشار 2016